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ON TSIRELSON’S SPACE

BY
P. G. CASAZZA. W. B. JOHNSON" AND L. TZAFRIRI"

ABSTRACT

A structure theory is developed for Tsirelson's example of a Banach space
which contains no isomorphic copy of I, or ¢,. In particular, it is shown that this
space is the first example, other than subspaces of [, and c,, of a Banach space
which embeds isomorphically into each of its infinite dimensional subspaces.

Introduction

In this paper we present some additional properties of the space introduced by
Tsirelson in [11] and its variations discussed in [5], [6] and [3]. Further results on
this interesting space will be presented in [4] and [2].

Tsirelson’s original space (denoted here by T*) was the first example of a
Banach space which contains no subspace isomorphicto ¢oor [, ; 1 = p <. The
notation T for the dual of Tsirelson’s original space as well as the analytic
description of the norm in T were given in [5]. The convenience of working with
a concrete formula for the norm made us prefer this particular notation.

The main result in this paper asserts that T* is minimal in the sense that every
infinite dimensional subspace of T* contains in turn an isomorphic copy of T*.
(In fact, Theorem 14 says that T* embeds isomorphically into every infinite
dimensional subspace of a quotient of T*.) Previously, only the spaces I, ;
1=p <o, ¢, and their infinite dimensional subspaces were known to be
minimal.

The minimality of T* is a consequence of a simple criterion for the
boundedness of operators on T and T* (Theorem 8) and an analysis of the
structure of subspaces of quotients of T and T* which also yields, among other
results, the fact that if Y is a quotient space of T or of T* then every infinite
dimensional subspace of Y contains in turn a subspace E which is com-

' Supported in part by NSF MCS-8002221 and MCS-8102238.
" Supported in part by NSF MCS-7903042.
Received August 3, 1983

81



82 P. G. CASAZZA ET AL. Isr. J. Math.

plemented in Y and which is isomorphic to the closed linear space of some
subsequence of the unit vector basis of T, respectively of T*.

The fact that T* is minimal suggested that T* might also be a prime space (i.e.
a space whose infinite dimensional complemented subspaces are all isomorphic
to the whole space). This conjecture is disproved in [4]. The main result of [4] is
the surprising assertion that T is equal to the so-called modified Tsirelson space
Tw, defined in [6). The fact that Ty, and hence also T, is not even primary is
relatively easy to check (a space X is said to be primary provided that, whenever
X =Y & Z is a direct sum decomposition, then either Y or Z is isomorphic to
X).

Many other results about the structure of 7, T* and related spaces are
scattered throughout the paper. For example, it is proved in Theorem 16 that
every quotient space of T* embeds into T*.

From a technical point of view, one interesting aspect of the present work is
that blocking methods, which have been previously used to analyze the structure
of [, and ¢,, work equally well for spaces of Tsirelson type. We say that a finite
dimensional decomposition (F.D.D., in short) {C,},-, for a Banach space X is of
type T (respectively, of type T*) if there are natural numbers 1 = k; <k, <+ so
that for any x, in C,, n=1,2,3,---, .., x,. converges in X if and only if
Sn-illx. || &, converges in T (respectively, = -.| x. ||t} converges in T*), where
{t. )21 (respectively, {t%}.-1) is the unit vector basis for T (respectively, T*). If it
is important to specify the sequence {k.}.-1, we say that {C,},-: is of type T (or
type T%*) relative to {k.}»-i. We show that every F.D.D. for a subspace of a
quotient of T (respectively, T*) has a blocking which is of type T (respectively,
type T%).

We use standard Banach space theory terminology, as may be found in the
book [10]. In particular, we refer to [10] for a discussion of F.D.D.’s and
blockings thereof.

Results on the Tsirelson space

Throughout this paper we write E < F or E = F when E and F are subsets of
the integers which satisfy max E < min F; respectively, max E = min F. In case
one of the sets, say E, consists of only one non-negative integer n we put n <F
or n =F instead of {n} < F; respectively, {n} = F.

Let T, be the linear space of all sequences of scalars which are eventually zero
and let {t,}-; denote the unit vector basis in To. For a vector x = 23, a., € T
and 1= E we define Ex = 2,cgadt.. Set
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o= max | a |

and, for m =0,

k
[ = max {1 2" max | 331l
j=1
where the inner maximum is taken over all choices of finite subsets {E;};_; of the
integers so that
k§E1<E2<"'<Ek,

k =1,2,---. Any expression of the form 27! £¥_,|| Ejx ||.., with the {E;}/_, chosen
as above, is called an admissible sum for the vector x. The definition of
admissible sums presented here differs slightly from that given in [5] by allowing
k = E, instead of k < E,. It will be shown later that both definitions produce
equivalent norms; however, the one used here simplifies the notations. It is
easily seen that the sequence {t.}.-: forms an unconditional basis in the
completion T of T, with respect to the norm

[=lim [x]n; xET.
It is immediately verified that the norm of a vector x € T satisfies

®) fli=sup {1027 sup [ 31 1]}

where the inner supremum is taken again over all choices of finite sets {E;}/-;
such that k = E, < E,<-- < E, k=1,2,--".

It is proved in [11] (see also [5]) that T contains no subspace isomorphic to ¢,
or to [, ; 1= p <. In particular, T is reflexive.

Our first result explains the way in which the m + 1-norm of a vector x € T is
actually computed.

PROPOSITION 1. For any vector x € T and any integer m, either
k
(1% llm+1 = sup {2_1 2N Eix|n; kSE<E;<---<Ei, k=12, }
l'=

or
1 s = 11 flo-

ProoF. Suppose that for some vector x € T and some integer m,
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k
[I [lm+1 > sup {2—1 2NEx|m; kSE<E<---<E k=12, } :
=
Then, by the definition of |- ||m+1, we have || X [m+1 = || x||.. It follows that

k
Hxllm>sux){2"ZHEfxl|m;kéEl<Ez<---<Ek;k =1,2,---}
=1

3
j=1

;sup{z“ |Exwo; k SE,< Ey<---<FEy; k =1,z,~-}
and, hence, ||x|l» =]/x l.—1. Continuing so, we easily conclude that ||x |lm.) =

1 - O

We present now a lemma which is very useful in the study of block basic
sequences of {t.}r-1.

LemMMA 2. Fix an integer m and an increasing sequence {k.}._. of positive
integers. Then, for each vector x = Z;_, a.t, € Ty there exist finite subsets {E,}i-,
of the integers so that

1=E,<E,<E;

and

DL

ProoF. The proof is done by induction on m where the case m =0 is
obvious. Suppose now that the assertion is correct for some m and all the vectors
x € To. Fix a vector x = 27_; ant, and put y =27 autyy,. I |y |lme1 =]y |l= the
case m + 1 is completed immediately. Thus, we can assume the existence of a
sequence {F,-}fi"l of finite disjoint subsets of the integers such that

3
< > 1B

kw=F<F<---<F,,
and
k2n
m+ =2_1 F me
1yl ];H iyl

By applying the induction hypothesis to each of the vectors Fy; j =1,2,- -+, ks,
we can find sets {E};%.}1 so that

ky, 3
=27 !
[¥les =27 3 3 [Efe .
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Notice that there is no loss of generality in assuming that the set {E;};‘i",,?:, are
mutually disjoint and that E| Z k, for | =1,2,3. Hence, by reindexing these sets
as {G,.}iki?, we have

k,lé(;1<Gz<"'<G3k2’l

and

3k,,

[yl =27 2 |Gk

k. 3k,

k, i
=27 > | Gux || +27 Z |G f|m +27" }; I Gux [lms
h=1 h=k,+1 h=Ei+1

where k), =k, + k... Let

k, kn 3k,
El = U Gp,, Ez = U Gh and E3 = U Gh.
h=1

h=k,+1 h=k+1

Since k, = G, it follows that 27" Z¢2, | Gyx || is an admissible sum for the vector
E,x. Since there is no loss of generality in assuming that (min G, )x # 0 for all h it
follows that k= kn = kus, = Gi 1 ice., also the sum 27 Siti oi[| Gk | s
admissible for the vector E,x.

In a similar manner we verify that

kn+k,,+k,’_§ Gk,'_+1 <. < G3k1,,-

Hence, it remains to check that 3k,, — k. = k,.«; in order to conclude that also
2" Eiki;,;ﬂ | Gux || is an admissible sum for E;x, and thus obtain

3

1y llmer = 2, 1 Eix [l

=1

Indeed, this follows by adding the following two inequalities:

ki = koi, =kn—k, =k
and

2k2n é 2kn+kn = kn+k,,+k,,+k" = kn+k;,- D

It is clear from the definition of the norm in T that, whenever {k,}.-, and
{jn¥x-1 are two increasing sequences of integers so that k, = j,, for all n, then

> ab =] ad,
n=1 n=1

=

’
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for all choices of scalars {a.}.-,. By using this observation and Lemma 2, we get
immediately the following result:

ProPOSITION 3. For every increasing sequence of positive integers {k.}.-, and
any choice of scalars {a.}.-,, we have

S adt, S auti, > adk,
n=1 n=1 n=1

REMARK. Proposition 6 contains actually a much stronger result than Propos-
ition 3, but Proposition 6 requires Proposition 3 for its proof.

It follows from Proposition 3 that every subsequence of {t.}.-, spans a Banach
space which is isomorphic to its cartesian square.

= =3

We present now some results concerning block basic sequences in T.

LEMMA 4. Let y, =2 ati; n=1,2,--- be a normalized block basic
sequence of {t.}n-1. Then, for any sequence of scalars {b.}.-1, we have

"2=1 bntp,,+1 "2=1 bnYn .

PrOOF. We shall prove by induction on m that
2 bntp,_+1 2 bnYn
n=1 n=1

for every choice of scalars {b,}n_.. The case m =0 is trivial since || y.|| =1 for all
n. Suppose now that the inequality holds for some m and all {b,},-,. Fix n and
take a sequence {E;};-; of finite subsets of the integers such that

<

b

=
m

n=E <E,<---<E,.
Then, without loss of generality we may assume that each set E; is an interval of
the form [p. +1, p;]. Now, choose scalars {b.},-1 and put x =2}, but,+1 and

y = Zi_, b.y.. By using the induction hypothesis for each of the vectors {Ejy }7-, it
follows that

2" 21 IEx flm =27 Z IEyl=lyl.
j= j=

This, of course, completes the proof. |

LEmMMA 5. Let y. =37, at;; n=1,2,--- be a normalized block basic

sequence of {t.}n-1. Then, for any sequence of scalars {b.}-., we have

n2=1 b"yn "2__:1 b"tpn+l

=6
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The proof of Lemma 5 will require the introduction of a new norm on To. The
norm ||| - || is defined exactly as ||- || except that in the inner maximum of

2k
5 W = max {2 max | 11l |

we allow the finite subsets {E;}}%, to satisfy

k§E1<E2<"‘<E2k.

It is easily verified that

2 cntn i Cnt2n
n=1 n=1

for every choice of scalars {c,}.-; which is eventually zero. It follows from

>

Proposition 3 that
lxfi= M=l =301,

for any x&T, and thus also for any vector x € T.
We can return now to the proof of Lemma 5. In view of the remark made
above, it clearly suffices to prove that, for any choice of scalars {b,}.-; and any

integer m, we have
5 b =2]| 5, b |

The case m = 0 is trivial so we will assume that this inequality holds for some m
and all choices of scalars {b,},-1. Put x = 2, b.t, ., and y = 2, _, b.y., for some
choice of scalars {b,},-, such that both series converge. Select an integer k and a
sequence {E;};-, of finite intervals of the integers so that k = E; < E, < - < E,.
By enlarging the set E if needed, we can assume without loss of generality that
max E. = p;.., for some j > k. Foreach jand n, let F, ={p, + 1,p. + 2, *, pusi}
and G; = U{F, ; F, C E;}. Put

=2

m

H={n;F,NE;#Jforsomel1=j=<k but F,Z E;}

and notice that H =< k. Now, by the induction hypothesis and the definition of
the norms || || and ||| - |||, we get

k k k
2 S By e =27 Y Gy e +27 3, 3 1B O )y
j= j= j=

k k
=2 Y20 Gxll +27 X 2[Fylm =2 NGx Il + 2 IEy |,
j=1 1€EH j=1 l€H
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since ||ull. =||ul|= || u ], for all u € T. But, for each [ € H,
I1Ey || = by || = ]

Hence,

k k
2 2 NEy =2 NGx Il + 2, M b, -
j=1 j=1 I€EH

However, the expression appearing on the right-hand side contains at most 2k
elements since H = k. It follows that this is twice an admissible sum for x
relative to the norm ||| ||| and thus

k
2" Sy =20l -

This, of course, implies that ||y [l =2 x ||| . O

As an immediate consequence of Proposition 3 and Lemmas 4 and 5, we
obtain the following result:

PROPOSITION 6. Lety, =3iv, siai; n =1,2,+ - be a normalized block basic
sequence of {t.}n-1 in T. Then, for any choice of integers p, <k, = pni1;
n=1,2,--- and scalars {b.},-., we have

3| S 1Bl =] 3 b

b || = =18

>, b,
n=1

CoroLLARY 7. (i) Let {E.}._, be a sequence of finite subsets of the integers
such that 1=E,<E,<--- and let k, € E, for all n. Then for each x in T,

lni;l | Exx | ’21 E.x

(i) More generally, let {A;}7-, be an F.D.D. of type T relative to {p(i)}i-:, let
B, = [A,-]i";,‘,_—l be a blocking of {Ai}i=, and let p(L.)< k., =p(l..x—1) for all n.
Then {B,}.-1 is an FE.D.D. of type T relative to {k.}n-1.

3—1

t,

.,

S \

=18 Uzl | E.x|

Proor. To prove (i), simply apply Proposition 6 to the block basic sequence
{E.x/| Eax[|}n=1, E.x#0.

To prove (ii), assume, without loss of generality, that for all x; in A; the norm
is given by

|3 %] =[5 1o

i=
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In particular, for 0 #y, in B,,
1,,—1

Yo = ; X; with x; € A;,

we have that

i1
2 x| 46>
1=in

Proposition 6 thus yields for such y.’s that

x > ™1
S el = | 2 05l (11 2 5050 |
Sy

and the middle term in the above inequality is equal to |£,x:||; i.e., to
[Z5-1yall. O

lyall=

=

371

b,

=18

b,

Our next result provides a basic tool for the construction of bounded linear
operators on spaces which have an F.D.D. of type T.

THEOREM 8. Let {U,}.-1 be an F.D.D. for X of type T relative to {k.},-., let
{V.}e=1 be an E.D.D. for Y of type T relative to {j.}.-., and assume that for some i
and all n,

kn é jn+i and jn é kn-H-

Suppose that L,:U,— V, are linear operators with sup, |L.|<w®. Define
(formally) L : X —> Y by

L(Zx,.>=EL,.x,.; €U, n=12, -
n=1 n=1

Then L is bounded. Moreover, if in addition each L, is one-to-one and
sup, |L.'|| <, then L is an isomorphism from X into Y.

Proor. This theorem reduces to the obvious case where j, = k, for all n,
because Proposition 6 yields that {, }%-1 is equivalent to {#, }.-, which implies
that {V, }»-iis an F.D.D. of type T relative to {k, }n-:. -

REMARK. Notice that if {E,},-; and {F.}.-, are two sequences of finite
subsets of the integers so that | = E, < E,<:---, 1=F,<F,<::-, and E, ;<
F, <E,., for all n, then Theorem 8 applies to the F.D.D.’s U, =[t}ick,
V,=[t)ier,; n=1,2,-++, for T.
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COROLLARY 9. Ewvery block basic sequence of {t.}.=, spans a complemented
subspace of T.

PROOF. Let y, =327 . ati#0; n=1,2,---, be a block basic sequence of
{t.}:_,. For each n, there is a norm one projection P, from [¢; ]f";,,'nﬂ onto the one
dimensional subspace generated by y,.. Let E. ={p. + 1,pa +2," -, pasa}; n =
1,2,---. Then, by Theorem 8, the operator P:T— T, defined by Px =
5. P,(E.x); x € T, is a bounded linear projection onto [ y. ). -1. O

THEOREM 10. Let {k.}.-\ be an increasing sequence of positive integers and,
k x . .
for each n, put W, =[t:]:2k.+1. Then, the subsequence {t,}.-1 is equivalent to
{t.}n+1 If and only if

Sup ” I" H < UQ’

where 1, is the formal identity map from W, into I,.

PROOF. We shall assume first that {# },-1 is M-equivalent to {1.}.-,, for some
m = 1. Fix n and consider a vector of the form u, = Xfil‘nﬂ ait;. Since Kk, — k. =
k. . it follows that 2"2:‘1;‘"“{ a:| is an admissible sum for the vector v, =
Efll'"“ ait,,. Hence,

k

n+

2 ;“[Ja,léuvnnéMuunu,

which, in view of the remark made above, implies that || 1| = 2M, for all n.
In order to prove the converse, we shall assume that

sup || I ]| = C <.
Let j(0)=0 and, for n =1, let j(n}= kj@w_y+. This definition ensures that
{j(n)}n-o is an increasing sequence. Now, for each n, put
E,={i;j(n-1)<i=jn)} and F,={k;i€E,}

Since max E, =j(n), minE,=j(n~-1)+1, maxF, =k and minF, =
ki(n—1)+1 =j(n), we have

E,.-] é](n e I)< F,‘ < kj(,.)+1 =](n + 1)< En+2,

for all n; i.e., all the conditions imposed on {E.}.- and {F,}:-; in the remark
after Theorem 8 are satisfied. Put U, =[t:)icg, and V, =[t]ier,, and define an
operator L, : U, — V, by
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L( 3 ar)= 3 an.

i€E,

for all choices of scalars {a:}icg,. Obviously, the operator L : T— T, defined
formally by Lx = 2}, L, (E.x); x € T, has the property that it maps t, into
for all n (since U, - E, consists of all the positive integers). Consequently, the
proof of Theorem 10 will be completed once we show that L is bounded or, in
view of the remark following Theorem 8, that sup, || L, || < .

For every h, put A, = {1+ k;j(a—2y+h 2 + Kjn—2)4h * *» Kjtn—2y+n+1}. Then, for every
n > 1 and every sequence {a:}ice,, we have, by Lemma 4, that

2 aiti|| =
i€E,

jn=D=in-2)
> 2 at

A=t iEA,
jin—1)y—j(n-2)
=1 i;h

However, our assumption on I, implies that

2 'a"éc za.-tk,. .

v

j(n~2)+h ” .

i€EA, i€E,
Hence,
jin=D—j(n-2)
>
= a; t1+k. _2)+ “ .
2 () b

On the other hand, it is readily verified that the expression
PID SN Yiea, la:]) is an admissible sum for the vector

Jin—1)—j(n-2)
2;."1 = (“‘GAA fai Dtl““k,‘(n—z)n.‘ ThUS,

2 ait; = 2AIC‘V1 552;" l a; ' = 271C—1 M ,‘;’_ a.«tk,.

iE€E,
It follows that ||L.||=2C for all n>1 and, since L, is clearly a bounded
operator, this concludes the proof. |

REMARK. Theorem 10 was formulated and proved for a subsequence {#_}n-,
of {#.}.-1,. Sometimes, it is necessary to be able to compare two general
subsequences {t }.-: and {¢, }._, of {t.}n-,

Put M, ={k,;jin<k.=<j}and N, ={j. ; ki1 <j. =k}, fori =1,2,---. Thus,
one can show, by exactly the same methods as those used in the proof of
Theorem 10, that {# }.-, is equivalent to {r, }:-, if and only if

Ll i} <o
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where I, (respectively, J;) is the formal identity map from [, ].en, (respectively,
[t ]nem,) into 1. _

In the case when {1, }5.. is a subsequence of {t, };-, we clearly have N, = 1, for
all i. Therefore, one can conclude that a subsequence {f, }._, of {t }.-: is
equivalent to {t,}.-: if and only if

sup [ Ji ]| <ee.

We would like to describe now some concrete cases when lacunary sequences
{k.}--1 have the property that {# }.-1 is equivalent to {t,}»-,. To this end we
introduce a sequence {¢:};-o of functions defined on the positive integers by
letting:

@o(n)=n2" for all n,
and
i) =(piceio o p)(n),
[
¢, (n)—n iterations

for i =0 and all n. With this notation, we prove first the following simple lemma:

LEMMA 11. Fix integers i and n, and let {E;};_, be a sequence of non-empty
finite subsets of the integers so that

n=E, <E,n<---<E;

with k < ¢;(n). Then, for each x €T,
k
) IxI247 3, | Ex]l.

PrOOF. We fix n and x € T, and prove the lemma by induction on i. For the
case i =0, we assume for notational convenience that the sequence {E;}}-, has
the maximal number of elements allowed; i.e., k = n2" — 1. By using (*), we get

llxllz?‘g

n2i-1

2 ij

j=n2'?

Now, notice that for each 1= =n, n2"' = E,»-1 <+ < E,;,. Hence, by using
again (*), we obtain

n2i—1

> Ex

j=n2it

n2!—1
=27 Y |Ex]|.

]'=r|21_l
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Combining these inequalities we finally conclude that

n2n—1
Ixlz4™ X IEx],
j=n
which completes the case i =0.
For the induction step we use exactly the same argument with the exception
that instead of (x) we apply (*;). O

CoroLLARY 12. For each fixed i =0, the sequence {t,..\}.-: is equivalent to
{tn :21.

Proor. By Lemma 11 applied to a vector x in T of the form Ef;(:,)(;‘,l) a;t; with
E; ={j} for ¢:(n —1)=j < ¢:(n), we easily conclude that ||I,|| = 4" where I, is
the formal identity operator from [ ]f;(.::(_,.l_l, into /;. This completes the proof in
view of Theorem 10. |

REMARKS. (1) The functions {¢;(n)}.-1; i =1,2,--- have a very fast rate of
growth. One case which illustrates well this situation is the following. Put
expon = n, for all n, and then, for j, n = 1, set exp;n = 2°%~1". It is easily verified
that exp. n = @i(n), for all n. Hence, by Corollary 12, {f.x,» }x-1 is equivalent to
{t.}n-1 itself. This result is used in [2].

(2) Most of the results stated so far in this paper for T or for F.D.D.’s of type
T are valid also for T* or for F.D.D.’s of type T*, when suitable modifications
are made. Generally the “dual” results are deduced from the results we have
stated in a purely formal manner.

We shall denote the unit vector basis in T* by {tt}:_;. Then, for instance,
Proposition 6, adapted for T*, asserts that if z§ = Ef;;‘nﬂ atf;n=12---isa
normalized block basic sequence of {t}}.-1 and q. < h, = g..1, for all n, then

S g )= da S i,
n=1 n=1 n=1

for any choice of {doYim, Naturally, also Theorem 8 and the remark following
can be extended easily to the case of F.D.D.’s of type T*. The adaptation of
Theorem 8 to T* will be used in the sequel. As is readily verified, Corollary 9
remains valid in T*, as stated.

Finally, Theorem 11 remains true also in T*, in the sense that a subsequence
{t.}=-1 is equivalent to {f}}.-, if and only if

187" = =3

’

sup || 1| <,
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where I, is the formal identity from [t',»"]f;‘k‘nﬂ mto L.. This is checked by duality.
Corollary 12 is valid, too.

(3) In[1], Bellenot uses Theorem 10 to give a complete description in terms of
the growth rate of {k.}»-: of when {#_ }._. is equivalent to {t.};-.

In the last part of the paper we present a blocking principle for F.D.D.’s in
subspaces of quotient spaces of spaces having an F.D.D. of type T or type T*,
which has some interesting applications.

THEOREM 13 (the blocking principle). Let {C.}.-\ be an F.D.D. of a subspace
Y of a quotient space of a Banach space X, and assume that X has an F.D.D.
{A.}.-1 which is of type T (respectively, of type T*). Then {C.,}.-\ has a blocking
{D.};-, which is a F.D.D. of type T (respectively, of type T*).

Proor. By duality, it suffices to prove Theorem 13 for T only. Suppose that
Y is a subspace of a quotient space Z of X and denote by Q: X 25 Z the
quotient map. Let {C%}-1 be the F.D.D. of Y* determined by {C.}.-1. Let M be
the F.D.D. constant of {C, },-, in the sense that, whenever y, € C,, for all n, and
k <j, we have

k i
zl=ml 2]

The dual Y* of Y is isometric to a subspace of a quotient space W of X*.

Denote by R : X* > W the corresponding quotient map.

By [7], [8] (see also proposition 1.g.4 (b) from [10] and the remark thereafter)
applied successively to Q and R, we can construct blockings

B =[Al%¢" and Bf=[ATFSET; i=1,2,-
of the given F.D.D. for X and the corresponding F.D.D. for X*, and blockings
D.=[Gli%3" and Df=[CIPSE i=12,-

of the given F.D.D. for Y and the corresponding F.D.D. for Y* so that:
(1) For each i and each y € D;, there exists an element x € B; @ B:., for
which:

lOx —yll=M™2"7[ly| and [x]=8]ly].

(2) For each i and eachl yf € D l there exists an element x* € B% & B.., for
which

[Rx*—y*|=M72"2[y*| and [x*[=8]y*].
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Now, let y; €D;; i =1,2, - be a sequence of vectors which is eventually zero

and let x; € B: @ B..., be the corresponding sequence of vectors given by (1).
Then,

I3,5]=[3; 0
=[5

+”2(ys~0xf)

+

5—21 X2i-1 “+ M‘l ; 2—i~2'| yi “

By Corollary 7 (ii), {B.}s-1 is an F.D.D. of type T relative to some sequence
{k.}7-. Using this and the fact that ||y || =2M || Z%.; y« ||, for all i, we obtain

|35 =k S 1wl Sy

where K is a constant which depends on the degree of equivalence between
{B.}»-: and an ““isometric” F.D.D. of type T. Hence, by condition (1) and the
1-unconditionality of {t.}.-:, we get

Hi nyé“KHi lFx: | s,

Using the version of Corollary 7 (ii) for F.D.D.’s of type T* alluded to in
Remark 2 after Corollary 12, we apply the same argument to a sequence y{ in
D}, i=1,2,---, which is eventually zero, and conclude that

IR BT
Finally, by a straightforward duality argument, it follows that
2yl
i=1

The most interesting application of the “blocking principie” proved in
Theorem 13 is the following result which asserts in particular that T* is minimal.

|+2"

S eI

’

=32K ug lly: I,

=4K

O

IZ Vi ” = (4KM)™! tf -
i=1

THEOREM 14. Any infinite dimensional subspace of a quotient space of T*
contains in turn a subspace which is isomorphic to T*.

ProoF. Let X be an infinite dimensional subspace of a quotient space of T*
and let X, be a subspace of X with a Schauder basis {x,}.-.. By interpreting the
basis as an F.D.D. for X, and by applying Theorem 13, we conclude that {x,}:-



96 P. G. CASAZZA ET AL. Isr. J. Math.

contains a subsequence which is equivalent to a subsequence {t* }; ., of {t%}._..
Therefore, in order to complete the proof it suffices to show that, for any
increasing sequence {k.,},-: of positive integers, T* is isomorphic to a subspace
of [tl:‘:, ]:=1.

Let {k.}.-. be such an increasing sequence of integers and put V = [# |7 .. Let
m=1,E, ={1,2, -, kn} and U, = [t}].cs,. Since [£ Jo"4 is 2-equivalent to the
unit vector basis of /%, for all h, and since I is a universal space for all separable
spaces we may choose an n,, such that if F,={k.,k,,---,k.} and Vi =[t}].er,
then there exists an invertible operator L, from U, into V, with ||L{'[=1 and
IL:l=2.

Let m,=max(m,,n)+1 and set E,={km +1,kn +2,- -, kn} and U.=
[t%]sce- As in the previous case, choose an integer n. so that if F,=
{Kny+1y Knjs2, * =+ kny and V, =[t}].cr, then there exists an operator L, from U,
into V, with |[L7']|=1 and |L.||=2. Continuing so, we can construct finite
subsets {E;};=: and {F;};=, of the positive integers, subspaces U; = [t}].cg, and
V; =[ti]ner, of T*; j=1,2,---, and invertible operators L; from Uj into V;;
j=1,2,--- such that

() 1=sE<E;<---<E<--rand1=F<F,<---<F<---

(i) U-E =Nand U F ={k.J;,,

(ili) F; C E; U Ej4y, for all j,

(@v) |L7'l=1 and || L;}| =2, for all j.

By using Theorem 8 and the remark thereafter adapted for T* (see Remark 2
following Corollary 12), it follows that the operator L : T*— V, defined by

Lw =) L;(Ew); weTH
=

is an isomorphism from T* onto a subspace of V. a

ReMARK. The space T is not minimal. This fact, which is a consequence of
the result mentioned in the Introduction that the unit vector bases in T and Ty
are equivalent, is proved in [4].

The blocking principle described in Theorem 13 can be used to extend results
known for ¢, or l,-spaces to the case of spaces having an F.D.D. of type T or T*.

ProrosiTiON 15. Let V be a Banach space having an F.D.D. of type T
(respectively, T*). Then every quotient space of V is isomorphic to a subspace of a
space with an F.D.D. of type T (respectively, T*).

Proor. If the quotient of V has an F.D.D., Proposition 15 is a special case of
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Theorem 13. The general case is deduced from the Theorem 13 case in the same
way as the corresponding statement in [, (cf. theorem 1 in [9]). O

It is well known that quotient spaces of ¢, are isomorphic to subspaces of ¢,
(cf. [9]). As an application of Proposition 15, we prove that a similar assertion
holds for T*.

THEOREM 16. Every quotient space of T* is isomorphic to a subspace of T*
and, hence, every subspace of T is isomorphic to a quotient space of T.

Proor. Let W be a quotient space of T*. By Proposition 15, W is
isomorphic to a subspace of a space Z having a F.D.D. of type T*. The proof
will be completed once we show that Z itself embeds isomorphically in T*.

Suppose that {Z,}._, is an F.D.D. of type T* for Z relative to a sequence

{k.}n-1. Choose now an integer m(1l) so that W,=Z, is 2-isomorphic to a

subspace of [#* |n{? (use the fact that, for each m, {1* }i~,, is 2-equivalent to the

unit vector basis in 17). Consider now W, =[Z,]"? and choose an integer

m(2)> m(1) so that W, is 2-isomorphic to a subspace of [t |7%hq)+. Continuing
50, we construct a blocking {W;}_, of {Z,}.-1 and an increasing sequence
{m(i)}i=o of integers (where m(0) = 0) so that, for each i >2, W, = [Z,]7 -1y
is 2-isomorphic to a subspace of [ |7l

As mentioned above, { W;}i-, is also an F.D. of type T* for Z but relative to
{km}i=1. Finally, for each i, let L; be an isomorphism from W; onto a subspace
of [1% Jrimi so that |L7'||=1 and || L; || = 2. By the version of Theorem 8 for
F.D.D.’s of type T*, the operator L:Z —[# ].-1C T* defined by: Lz =
SioLw, for z =27 ow; EZ with w, € W, i =1,2,---, is an isomorphism of Z
onto a subspace of T*. OJ
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