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ON TSIRELSON'S SPACE 

BY 

P. G. CASAZZA,* W. B. JOHNSON*' AND L. TZAFRIRI" 

ABSTRACT 

A structure theory is developed for Tsirelson's example of a Banach space 
which contains no isomorphic copy of Ip or co. In particular, it is shown that this 
space is the first example, other than subspaces of lp and co, of a Banach space 
which embeds isomorphically into each of its infinite dimensional subspaces. 

Introduction 

In this paper we present some additional properties of the space introduced by 

Tsirelson in [11] and its variations discussed in [5], [6] and [3]. Further results on 

this interesting space will be presented in [4] and [2]. 

Tsirelson's original space (denoted here by T*) was the first example of a 

Banach space which contains no subspace isomorphic to Co or lp ; 1 < p < ~. The 

notation T for the dual of Tsirelson's original space as well as the analytic 

description of the norm in T were given in [5]. The convenience of working with 

a concrete formula for the norm made us prefer this particular notation. 

The main result in this paper asserts that T* is minimal in the sense that every 

infinite dimensional subspace of T* contains in turn an isomorphic copy of T*. 

(In fact, Theorem 14 says that T* embeds isomorphically into every infinite 

dimensional subspace of a quotient of T*.) Previously, only the spaces lp; 

1 =<p < ~ ,  Co and their infinite dimensional subspaces were known to be 

minimal. 

The minimality of T* is a consequence of a simple criterion for the 

boundedness of operators on T and T* (Theorem 8) and an analysis of the 

structure of subspaces of quotients of T and T* which also yields, among other 

results, the fact that if Y is a quotient space of T or of T* then every infinite 

dimensional subspace of Y contains in turn a subspace E which is corn- 
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plemented in Y and which is isomorphic to the closed linear space of some 

subsequence of the unit vector basis of T, respectively of T*. 

The fact that T* is minimal suggested that T* might also be a prime space (i.e. 

a space whose infinite dimensional complemented subspaces are all isomorphic 

to the whole space). This conjecture is disproved in [4]. The main result of [4] is 

the surprising assertion that T is equal to the so-called modified Tsirelson space 

T~, defined in [6]. The fact that TM, and hence also T* ,  is not even primary is 

relatively easy to check (a space X is said to be primary provided that, whenever 

X = Y E) Z is a direct sum decomposition, then either Y or Z is isomorphic to 

X). 
Many other results about the structure of T, T* and related spaces are 

scattered throughout the paper. For example, it is proved in Theorem 16 that 

every quotient space of T* embeds into T*. 

From a technical point of view, one interesting aspect of the present work is 

that blocking methods, which have been previously used to analyze the structure 

of lp and Co, work equally well for spaces of Tsirelson type. We say that a finite 

dimensional decomposition (F.D.D., in short) {C,}~=1 for a Banach space X is of 

type T (respectively, of type T*) if there are natural numbers 1 =< k~ < k2 < �9 �9 �9 so 

that for any xn in C,, n = 1 , 2 , 3 , - . . ,  E~=~xn converges in X if and only if 

Y~=, I1 x, II tk. converges in T (respectively, E : ~  II x, II t*n converges in T*), where 
{t,}~=~ (respectively, {t*}~_~) is the unit vector basis for T (respectively, T*). If it 

is important to specify the sequence {k.}~=~, we say that {C,}7-, is of type T (or 

type T*) relative to {k,}~=l. We show that every F.D.D. for a subspace of a 

quotient of T (respectively, T*) has a blocking which is of type T (respectively, 

type T*). 

We use standard Banach space theory terminology, as may be found in the 

book [10]. In particular, we refer to [10] for a discussion of F.D.D.'s and 

blockings thereof. 

Results on the Tsirelson space 

Throughout  this paper we write E < F or E _-< F when E and F are subsets of 

the integers which satisfy max E < min F;  respectively, max E -< min F. In case 

one of the sets, say E, consists of only one non-negative integer n we put n < F 

or n =< F instead of {n} < F;  respectively, {n} =< F. 

Let To be the linear space of all sequences of scalars which are eventually zero 

and let {tn}7=l denote the unit vector basis in To. For a vector x = E7~1 antn E To 

and 1 =< E we define Ex = En~Ea,tn. Set 
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Itx Iio = m a x  lan P 
n 

and, for m _-> O, 

[Ix [[..1 = max {llx lira,2 -1 max I j =~1 II ]~jx Hm]}, 

where the inner maximum is taken over all choices of finite subsets {Ej}~=1 of the 

integers so that 

k <=E1< E2<. . .<  Ek, 

k = 1 ,2 , . . . .  Any expression of the form 2 lY~=111Ejx lira, with the tEj/~=, chosen 

as above, is called an admissible sum for the vector x. The definition of 

admissible sums presented here differs slightly from that given in [5] by allowing 

k N E1 instead of k < El. It will be shown later that both definitions produce 

equivalent norms; however, the one used here simplifies the notations. It is 

easily seen that the sequence {t.}~=l forms an unconditional basis in the 

completion T of To with respect to the norm 

IIx II = ~im~ I[x II- ; x ~ To. 

It is immediately verified that the norm of a vector x E T satisfies 

(*) "x "=sup {"X "o,2-1sup [j~ "E,x "]] , 

where the inner supremum is taken again over all choices of finite sets {Ej}~=I 

such that k _ - < E I < E : < . . . < E k ,  k = 1 , 2 , . . . .  

It is proved in [11] (see also [5]) that T contains no subspace isomorphic to Co 

or to l~ ; 1 _-< p < ~. In particular, T is reflexive. 

Our first result explains the way in which the m + 1-norm of a vector x E T is 

actually computed. 

PROPOSITION 1. For any vector x E T and any integer m, either 

I[xJl,~.l=sup 2 -1 l lE jx l I~ ;k~EI<E,2<" '<E~,k=I ,2 , ' . .  

PROOF. 

or 

IIx II-., = IIx Iio. 

Suppose that for some vector x E T and some integer m, 
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tl x I1~+, > sup {2-' 
k } 

~ttEjxllm ; k ~ E I < E 2 < " "  < E k ,  k = 1 , 2 , ' "  . 
j = l  

Then,  by the definit ion of I1" lira+, we have IIx lira+, = IIx L .  It follows that 

II x fl~ > sup {2-' Z llE~x II-;k <=E,<E2< "'" < Ek ; k  = 1 , 2 , "  �9 
j = ,  

=> sup {2 -~ Z IIE~x ll~-,; k ==_ E , <  E 2 <  " "  < E k  ; k = 1 , 2 , ' "  
./=, 

and, hence,  IIx I[.1 = IIx II--1- Continuing so, we easily conclude that lex tl,.+l = 
llxll0. []  

We present  now a lemma which is very .useful in the study of block basic 

sequences  of {t.}~=~. 

LEMMA 2. Fix an integer m and an increasing sequence {k,}~=~ of positive 

integers. Then, for each vector x = S,~=~ a, tk. ~ To there exist finite subsets {G}3=1 

of the integers so that 

1 < E ,  < E2 < E3 

and 

~=1 ant~" m 3 --< 2 II E,x I1.. 
l= l  

PROOF. The  proof  is done  by induction on m where  the case m = 0  is 

obvious.  Suppose  now that  the assertion is correct  for  some m and all the vectors  

x ~ To. Fix a vector  x = Z~=~ a,tk. and put  y = Z~=, a,t~.. If H Y ]lr~+~ = I1Y Hm the 

case m + 1 is comple ted  immediately.  Thus,  we can assume the existence of a 

sequence  {Fj}~L~ of finite disjoint subsets of the integers such that  

k2, ~ F , <  G < . - .  < F~., 

and 

k2n 

][ Y [Ira+, = 2 -~ s~ ]] Fjy Hm. 

By applying the induct ion hypothesis  to each of the vectors  Fjy ; j = 1 , 2 , . . . ,  kz,, 
i l~, t/k2~ 3 we can find sets ~,-~m=l,a=l so that  

R2n 3 

]]y ]]m.l ~ 2  -~ Y, ~ ]]EIx [1,~. 
j = l  
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I k2n 
Notice that there  is no loss of general i ty in assuming that  the set {E)}j=, .~  are 

mutual ly  disjoint and that Et~ => k. for  l = 1, 2, 3. Hence ,  by reindexing these sets 
3k 2 

as {Gh}h=~, we have 

k. _-< G,  < G~ < �9 �9 �9 < G3~. 

and 

3k2n  

[lyllm+,---2 -~ ~ IIa~xl[- 
h = l  

k n k 'n 3k2n  

= 2 - '  h~=l II G~X I1~ + 2- '  h =~+~ II GhX I1~ + 2- '  h =~+, II GhX I1=, 

where  k"  = k. + k.+k.. Let  

k k"  3kzn 

E , =  I..J G~, E :  = ~.} (5;, and E3 = I_J Gh. 
h = l  h = k n + l  h = k ~ + ,  

Since k. _-< G, it follows that 2- '  Zhk~ II G~X I1" is an admissible sum for the vector  

E~x. Since there  is no loss of general i ty in assuming that  (min Gh)X ~ 0 for all h it 

follows that k ' - k .  =k.+k.--<Gk.+~; i.e., also the sum 2-'x~.+,tlG.xll~ is 

admissible for  the vector  E2x. 
In a similar manne r  we verify that 

Hence ,  it remains to check that  3k2. - k ' =  < k.+k: in order  to conclude that also 
2-1 3k2 r:a=~z§ II G.x lit- is an admissible sum for E3x, and thus obtain 

Ily [Im+x ~ ~ IlE,x lira+,. 
/=1  

Indeed,  this follows by adding the following two inequalities: 

t t k2.<=k.+k. = k . - k . < = k .  

and 

2k2. <=2k..k <-- k . . k  +k .~ = k . + k ' .  n n n n 
[] 

It is clear f rom the definit ion of the norm in T that,  whenever  {k.}7=, and 

{/'. }~=~ are two increasing sequences  of integers so that k. =< j . ,  for all n, then 

.~ a.&. <= ~= a.ts. , 
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for all choices of scalars {a.}~=~. By using this observation and Lemma 2, we get 

immediately the following result: 

PROPOSITION 3. For every increasing sequence of positive integers { k. }~_~ and 
any choice of scalars {a,}~=~, we have 

t ~= a.tk. ~ ~=la~tk~-. <=3 ~la-tk.I  �9 

REMARK. Proposition 6 contains actually a much stronger result than Propos- 

ition 3, but Proposition 6 requires Proposition 3 for its proof. 

It follows from Proposition 3 that every subsequence of {t. }~=1 spans a Banach 

space which is isomorphic to its cartesian square. 

We present now some results concerning block basic sequences in T. 

P +1 LEMMA 4. Let y. = Ei"--~.+~ ait~ ; n = 1,2,- �9 �9 be a normalized block basic 
sequence of {t.}~=,. Then, for any sequence of scalars {b.}~=,, we have 

< . 

PROOF. We shall prove by induction on m that 

~l b.tp.§ <- ~= b.Y . , 

for every choice of scalars {b.}~=,. The case m = 0 is trivial since Hy-H = 1 for all 

n. Suppose now that the inequality holds for some m and all {b.}~=,. Fix n and 

take a sequence {Ej}7=1 of finite subsets of the integers such that 

n < = E t < E 2 < . . . < E . .  

Then, without loss of generality we may assume that each set Ej is an interval of 

the form [p~ + 1,ps]. Now, choose scalars {b.}~=l and put x = E~=l b.tp.+, and 

y = E~=I b,y.. By using the induction hypothesis for each of the vectors {Eiy };=1 it 

follows that 

2 -1 ~ HE, x[I,. =__--<2 -1 ~ HE, y II--< [[y I1, 
i=1 j= l  

This, of course, completes the proof. [] 

~?P.+I LEMMA 5. Let y. = ~.~=p..la~t~; n = 1 ,2 , . . -  be a normalized block basic 
sequence of {t.}~=~. Then, for any sequence of scalars {b.}~=~, we have 
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The proof of Lemma 5 will require the introduction of a new norm on To. The 

norm II1" III is defined exactly as I1" II except that in the inner maximum of 

Ill x Ill r-+l = max / l [ Ix  Ill ,,, 2-' max [ ~  Ill Esx Ill,-]/ 
I L i = 1  J J  

we allow the finite subsets {Es}~k=~ to satisfy 

It is easily verified that 

k <-_ E ,  < E2 < �9 �9 �9 < E2k. 

I cnt  I  Cn/2n 
for every choice of scalars {cn}~=l which is eventually zero. It follows from 

Proposition 3 that 

IIx II----IIIx III--<311xll, 
for any x E To and thus also for any vector x E T. 

We can return now to the proof of Lemma 5. In view of the remark made 

above, it clearly suffices to prove that, for any choice of scalars {b, }~l and any 

integer m, we have 

The case m = 0 is trivial so we will assume that this inequality holds for some m 

and all choices of scalars {b~}~_,. Put x = E~-L b~tp~., and y = 2 ~ ,  bny~, for some 

choice of scalars {bn}~=, such that both series converge. Select an integer k and a 

sequence {Ej}~=, of finite intervals of the integers so that k _-< E~ < E2 < �9 �9 �9 < Ek. 

By enlarging the set EE if needed, we can assume without loss of generality that 

max Ek = pj§ for some j > k. For each j and n, let F~ = {p, + 1, p~ + 2,. �9 p~§ 

and Gj = U{F~ ; F~ C Ej}. Put 

H = { n ; F~ Cl E s ~ Q for some 1 _-< j _-< k but F~ g Ej } 

and notice t h a t / ~  <- k. Now, by the induction hypothesis and the definition of 

the norms II �9 II and Ill" III, we get 

k k k 

2 -1 ~ flE/y I],~ _-<2-' ~ IIGjy lira + 2 - ~  ~ II(Es n F,)y 1],, 
j = l  j = l  j ~ ,  I E H  

k k 

_-< 2 -* ~ 2 III G,x III + 2 -~ ~,,211~Y II- --< Y~ III Gig III + ~ l i ly  II, 
j = l  I j = l  I ~ H  
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since ]l u II-, ---II u II ~ III u III, for all u E T. But, for each l E H, 

IIF, y II--II b,y, II--Ib, I. 

Hence, 

k k 

2-1 2 II Ejy II- ~ Z III a,x III + ,~ ,  III bttp,.~ Ill. 
j= l  j= l  

However, the exp_ression appearing on the right-hand side contains at most 2k 

elements since H < k. It follows that this is twice an admissible sum for x 

relative to the norm II1" III and thus 

k 

2-1 2 IIEsy lira ~ 2 III x III. 
j = l  

This, of course, implies that I[ Y lira+, < 2 III x III. [] 

As an immediate consequence of Proposition 3 and Lemmas 4 and 5, we 

obtain the following result: 

P +1 PROPOSITION 6. Let y, = s ad, ; n = 1,2, �9 �9 �9 be a normalized block basic 

sequence of {t.}~=l in T. Then, for any choice of integers p, < k ,  _-<p,+~; 

n - - 1 , 2 , - - ,  and scalars {b.}~=~, we have 

COROLLARY 7. (i) Let {En}~=~ be a 

such that 1 <= E l <  E2 < " " and let k~ 

b.y. <18  ~_~ b.tk. . 
n 1 = 

sequence of finite subsets of the integers 

E E,  for all n. Then for each x in T, 

H Eox II tk~ �9 E,x <= 18 
~---1 

(ii) More generally, let {A,}7=1 be an F.D.D. o[ type T relative to {p(i)}T=,, let 
l +1-1  

B~ = [A~]~%. be a blocking of {A~}~,, and let p(l~) <= k, <= p(l~+~ - 1) for all n. 

Then {B,}:=~ is an F.D.D. of type T relative to {k.}:=l. 

PROOF. To prove (i), simply apply Proposition 6 to the block basic sequence 

{Enx/HE, x H}:=I, Enx~ O. 

To prove (ii), assume, without loss of generality, that for all xi in Ai the norm 

is given by 

x, = ~ IIx, IIt~,,, 
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In particular, for 0 ~ y. in B,,  

ln+l--I 

Y"= ~ 

we have that 

x~ with xi E A~, 

I[y.ll = IIx, llt..~ 

Proposition 6 thus yields for such y, 's  that 

3 ' ~,  II y. [I --< II y. II II y. 11-1 ~ .  [[ x, II t . , , ,  

_-<18 , ~  IlY, Ilt~. 

and the middle term in the above inequality is equal to ET=lxi[[; i.e., to 

I[ Y-z-, y. 11. [] 

Our next result provides a basic tool fo~ the construction of bounded linear 

operators on spaces which have an F.D.D. of type T. 

THEOREM 8. Let {U,}~=~ be an F.D.D. for X of type T relative to {k,}~=l, let 

{V.}~=1 be an F.D.D. for Y of type T relative to {j.}~:~, and assume that for some i 

and all n, 

k, <- j,+i and j,, <= k.+i. 

Suppose that L, : U,---~ V. are linear operators with sup. [ [L.]]<~.  Define 

(formally) L : X--* Y by 

Then L is bounded. Moreover, if in addition each L, is one-to-one and 

sup. IIL2'II < ~ ,  then L is an isomorphism from X into Y. 

PROOF. This theorem reduces to the obvious case where ], = k. for all n, 

because Proposition 6 yields that {tj.}~=~ is equivalent to {tk.}~=~, which implies 

that { V, }~=, is an F.D.D. of type T relative to {k,}~=l. [] 

REMARk. Notice that if {E.}~=I and {F.}~=, are two sequences of finite 

subsets of the integers so that 1 =< E~ < E2 < �9 �9 �9 1 _-< E1 < F2 < �9 �9 �9 and E.  , < 

F, <E.+2 for all n, then Theorem 8 applies to the F.D.D.'s U, =[ti]~E.,  

V, = [t~]~Ev.; n = 1 , 2 , . . . ,  for T. 
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COROLLARY 9. Every block basic sequence of {t,}~=~ spans a complemented 

subspace of T. 

P + l  PROOF. Let y, = EF--p,+~ a~t~ 0; n = 1 , 2 , . . . ,  be a block basic sequence of 

{t,}~=~. For each n, there is a norm one projection P, from [t~]~"-~,' +~ onto the one 

dimensional subspace generated by y.. Let E,  = {p, + l ,p ,  + 2 , . . . ,p ,+l};  n = 

1 , 2 , . . . .  Then, by Theorem 8, the operator  P : T - - ~  T, defined by Px = 
E ~  P~ (E.x) ;  x E T, is a bounded linear projection onto [y.]~=~. []  

THEOREM 10. Let {k,,}]=~ be an increasing sequence of positive integers and, 
k I 

for each n, put W. = [t~]~"-~,.+,. Then, the subsequence {&.}~=, is equivalent to 

{t.}~., if and only if 

sup I[ I. tt < ~, 
n 

where I. is the formal identity map from W. into l~. 

PROOF. We shall assume first that {tk.}~=~ is M-equivalent to {t.}~=~, for some 
~k~+ 1 

m => 1. Fix n and consider a vector of the form u. = V~=~.+l a~t~. Since k~ - k. _<-- 

kk+L it follows that 2 -''~'k"" (a~t is an admissible sum for the vector v. = 
~,,kn+l 
~i=k.+l aitk,. H e n c e ,  

ka+l 

2 ~=~.+, !a,l<--Itv. llN MII u"]l' 

which, in view of the remark made above, implies that [1I. II =< 2M, for all n. 

In order to prove the converse, we shall assume that 

s u p  I1 lo tl = c < 
n 

Let j (O)=O and, for n E l ,  let / (n)  = kj~._,j§ This definition ensures that 

( j (n)}~o is an increasing sequence. Now, for each n, put 

E ~ = { i ; j ( n - 1 ) < i ~ j ( n ) }  and F , = { k , ; i E E . } .  

Since m a x E . = j ( n ) ,  m i n E . = j ( n - 1 ) + l ,  m a x F . = k s t . )  and m i n F . =  

kj~._,~+l = j ( n ) ,  we have 

E.-I <-_j(n - i ) <  1::. < ks~.)+, = j (n  + 1)<  E.+2, 

for all n;  i.e., all the conditions imposed on {E.}~=~ and {F.}~=~ in the remark 

after Theorem 8 are satisfied. Put U. = [t~]~E~. and V. = [t~]~., and define an 

operator  L. : U. ~ V. by 
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i n i E E n  

for all choices of scalars {a~}~E . Obviously, the operator L : T--> T, defined 

formally by Lx = ET=, L.(E.x); x ~_ T, has the property that it maps t. into tk., 

for all n (since I..J~=~ E. consists of all the positive integers). Consequently, the 

proof of Theorem 10 will be completed once we show that L is bounded or, in 

view of the remark following Theorem 8, that sup. [IL- II < o~. 

For every h, put Ah ----- {1 + kl~._2)+h , 2 + ki~n-e)+h,'" ", kjtn-2)+h+l}. Then, for every 
n > 1 and every sequence {a,},~., we have, by Lemma 4, that 

i ~  aiti = j(n-1)~(nh=! 2) iE~A h aiti 

j(n--l)~(n--2) 
>= h:, '~h a,t, II tl+k.. 2 , ,  II. 

However,  our assumption on In implies that 

,~ la'l<=CJ,~a,tk,[ �9 
Hence, 

I~f~E a,t, ll>----C -l S'~-l)h~(n-2) ( ,~ la, Qt,.k,,. 2,+~t ] . 

On the other hand, it is readily verified that the expression 
2-~ VJ~n-')-J(n-2) ~h=~ (Z,EA~ l a, I) is an admissible sum for the vector 
Y~t"--,')-Jt"-2)(~,cA, la, I)t,+k,,~_~,+~. Thus, 

~a~t, ~_>2-1C-1  ~ l a i l - ~ - ~ 2 1 C - I  ~a,tk, ll. 
iEEn II i n i n 

It follows that tlZotl<-_2C for all n > 1  and, since L~ is clearly a bounded 
operator, this concludes the proof. [] 

R~MARK. Theorem 10 was formulated and proved for a subsequence {tk.}7=~ 

of {t~}~=~. Sometimes, it is necessary to be able to compare two general 
subsequences {tk.}~=~ and {tj~}~=~ of {t~}~. 

Put M, = {k. ; j,_~ < k~ _--- j, } and N, = {j. ; k,_~ < j~ =< k, }, for i = 1, 2 , . . . .  Thus, 

one can show, by exactly the same methods as those used in the proof of 

Theorem 10, that {tk.}.~=~ is equivalent to { t~}~ if and only if 

sup max{ IlL [J, [l J, [1} < oo 
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where L (respectively, Z)  is the formal identity map from [tj.],~N, (respectively, 

[tk.].~M,) into l~. 

In the case when {t~.}~=~ is a subsequence of {&.}~=l we clearly have ~ = 1, for 

all i. Therefore,  one can conclude that a subsequence {ts.}~=~ of {tk.}~=~ is 

equivalent to {tk.}~=~ if and only if 

sup II z II < oo. 
i 

We would like to describe now some concrete cases when lacunary sequences 

{k,}7=1 have the property that {t~,}7=~ is equivalent to {t.}7=1. To this end we 

introduce a sequence {q~}7=o of functions defined on the positive integers by 

letting: 

and 

q~o(n) = n2", for all n, 

e , + , ( n )  = (~,, o 9 ,  . . . . .  q , , ) ( n ) ,  
Y 

e~ ( n ) -  n i tera t ions  

for i => 0 and all n. With this notation, we prove first the following simple lemma: 

LEMMA 11. Fix integers i and n, and let {Ej}~=, be a sequence of non-empty 
finite subsets of the integers so that 

n _-< E.  < E, ,+ l  < " " " < Ek 

with k < ~o,(n). Then, for each x E T, 

k 

(* , )  llxll>-4-~' ~ II~,x II. 
i : n  

PROOF. We fix n and x E T, and prove the lemma by induction on i. For the 

case i = 0, we assume for notational convenience that the sequence {Ej}~=1 has 

the maximal number of elements allowed; i.e., k = n2" - 1. By using (*), we get 

I=l  j = n 2  -1 

Now, notice that for each 1 _-< l _-< n, n2 ~-1 _-< E.e,-, < �9 �9 �9 < E,2,-1. Hence, by using 

again (*), we obtain 

.~1 EsX >=2 -1 .z,-1 E Ile;, II 
j = n 2  - t  . / = n 2 1 - 1  



Vol. 47, 1984 TSIRELSON'S SPACE 93 

Combining these inequalities we finally conclude that 

n2n--1 

Ilx ][ ---- 4-' ~ ]lEjxll, 
i = n  

which completes the case i = 0. 

For the induction step we use exactly the same argument with the exception 

that instead of (*)we apply (*i). [] 

COROLLARY 12. For each fixed i >= O, the sequence {t,,(,)}~=~ is equivalent to 
{t.}~-,. 

~ ' P i ( n ) -  1 
PROOF. B y L e m m a  11 applied to a vector x in T o f t h e  form~.j=~,~, oa~tj with 

Ej = {j} for ~0, (n - 1) _-< j < q~, (n), we easily conclude that ]1 I. I1 = 42' where I. is 
�9 ~ ~ ' i ( n ) - -  1 

the formal identity operator  from [tj]~=~,~.-o into 11. This completes the proof in 

view of Theorem 10. [] 

REMARKS. (1) The functions {~(n)}~=~; i - - 1 , 2 , . . .  have a very fast rate of 

growth. One case which illustrates well this situation is the following. Put 

expo n = n, for all n, and then, for j, n > 1, set expj n = 2 e'pj t'~. It is easily verified 

that exp, n < ~o~(n), for all n. Hence, by Corollary 12, {texp.o}~=l is equivalent to 

{t,}~_, itself. This result is used in [2]. 

(2) Most of the results stated so far in this paper for T or for F.D.D.'s of type 

T are valid also for T* or for F.D.D.'s of type T*, when suitable modifications 

are made. Generally the "dual"  results are deduced from the results we have 

stated in a purely formal manner. 

We shall denote the unit vector basis in T* by {t.},=l. Then, for instance, 
- -  q n + l  Proposition 6, adapted for T*, asserts that if z* -X~=q.+~ c~t*; n = 1 ,2 , - . .  is a 

normalized block basic sequence of {t.}.=l and q, < h, _-< q.+,, for all n, then 

18-' ~ d.t*. <= .~=l d"Z* <=3 ~=, d.t* , 

for any choice of {d.'}~=l. Naturally, also Theorem 8 and the remark following 

can be extended easily to the case of F.D.D.'s of type T*. The adaptation of 

Theorem 8 to T* will be used in the sequel. As is readily verified, Corollary 9 

remains valid in T*, as stated. 

Finally, Theorem 11 remains true also in T*, in the sense that a subsequence 

{t~.}~=~ is equivalent to {t*}~., if and only if 

sup II II < 0% 
n 
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kn*l 
where I, is the formal identity from [ti ],=k~ into 1~. This is checked by duality. 

Corollary 12 is valid, too. 

(3) In [1], Bellenot uses Theorem 10 to give a complete description in terms of 

the growth rate of {k.}~=l of when {t~.}7_1 is equivalent to {t.}~=,. 

In the last part of the paper we present a blocking principle for F.D.D.'s in 

subspaces of quotient spaces of spaces having an F.D.D. of type T or type T*, 

which has some interesting applications. 

THEOREM 13 (the blocking principle). Let {C,}7=l be an F.D.D. of a subspace 

Y of a quotient space of a Banach space X, and assume that X has an F.D.D. 

{A,}]=~ which is of type T (respectively, of type T*). Then {C,}7=1 has a blocking 

{D,}~=~ which is a F.D.D. of type T (respectively, of type T*). 

PROOF. By duality, it suffices to prove Theorem 13 for T only. Suppose that 

Y is a subspace of a quotient space Z of X and denote by O : X 0.% Z the 

quotient map. Let {C*}~=~ be the F.D.D. of Y* determined by {C.}~=1. Let M be 

the F.D.D. constant of {C,}~=~ in the sense that, whenever y, E C,, for all n, and 

k < L we have 

The dual Y* of Y is isometric to a subspace of a quotient space W of X*. 

Denote by R :X* ~ W the corresponding quotient map. 

By [7], [8] (see also proposition 1.g.4 (b) from [10] and the remark thereafter) 

applied successively to O and R, we can construct blockings 

- -  [ A  lP(  i+1 ) -1  
B i  - tZaJ l i= t , ( i )  and B~' = r A * l P ( i + I ) - I "  t . - a i l i=p(1 )  , i = 1 , 2 , . "  

of the given F.D.D. for X and the corresponding F.D.D. for X*, and blockings 

I-g"~ | q ( i + l )  I ~ I - f " * ] q ( i + l ) - t "  i = 1,2," " �9 D, = t,--iai=q~n and 0i  = t,~/li=q(i) , 

of the given F.D.D. for Y and the corresponding F.D.D. for Y* so that: 

(1) For each i and each y E D~, there exists an element x E B~ G B~+~ for 

which: 

IlOx-yll<=M-'2-'-211yll and Iixll_-<Sllyll. 

(2) For each i and each[ y* E D* [ there exists an element x* E B* (~ B~+~ for 

which 

I[Rx*-Y*ll<=M-~2-'-211Y*ll and IIx*ll_-<8llY*ll , 
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Now, let y~ ~ D~ ; i = 1, 2,. �9 �9 be a sequence of vectors which is eventually zero 

and let x~ E B, G B~+I be the corresponding sequence of vectors given by (1). 

Then, 

By Corollary 7 (ii), {B,}~=I is an F.D.D. of type T relative to some sequence 

{k,}~=,. Using this and the fact that IlY~ }1--< 2MIIZ~=, yk I}, for all i, we obtain 

~y,]=<K ~llx2,1lt~,{+Kl~llx2,-,lltk .... I + 2 '  k~__,ykl, 

where K is a constant which depends on the degree of equivalence between 

{B,}~=t and an "isometric" F.D.D. of type T. Hence, by condition (1) and the 

1-unconditionality of {t,}~-l, we get 

Using the version of Corollary 7 (ii) for F.D.D.'s of type T* alluded to in 

Remark 2 after Corollary 12, we apply the same argument to a sequence y/' in 

D*, i = 1 , 2 , . . . ,  which is eventually zero, and conclude that 

Finally, by a straightforward duality argument, it follows that 

/__~lYi---->(4KM) -1 ~llY, lltk, �9 [] 

The most interesting application of the "blocking principle" proved in 

Theorem 13 is the following result which asserts in particular that T* is minimal. 

THEOREM 14. Any infinite dimensional subspace of a quotient space of T* 
contains in turn a subspace which is isomorphic to T*. 

PROOF. Let X be an infinite dimensional subspace of a quotient space of T* 

and let 2(o be a subspace of X with a Schauder basis {x.}~=l. By interpreting the 

basis as an F.D.D. for Xo and by applying Theorem 13, we conclude that {x,}~=~ 
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contains a subsequence which is equivalent to a subsequence {t~.}.=l of {t.}.=l. 

Therefore, in order to complete the proof it suffices to show that, for any 

increasing sequence {k.}7=1 of positive integers, T* is isomorphic to a subspace 

of 
t* = Let {k.}7=, be such an increasing sequence of integers and put V = [ k.].=l. Let 

l~ ~r 2h = = [t~.],=h is 2-equivalent to the m~ 1, E~={1 ,2 , . . . , k . , , }and  UI [ , ] ,E~, .Since 

unit vector basis of I h, for all h, and since l| is a universal space for all separable 

spaces we may choose an nl, such that if F1 = {k~, k2," ", k J  and V1 = [t.].EF, 

then there exists an invertible operator Lt from U1 into V~ with IIL?II = 1 and 

IlL, 11<2.= 
Let mz = max(m,  n l ) - t -  1 and set E2 = {k,.~ + 1, k.,, + 2 , . . . ,  k,,~} and U2 = 

[ t . ] . ~ .  As in the previous case, choose an integer n2 so that if F2 = 

{k.,+~, k,,+2, �9 �9 ", k,~} and V2 = [t,].~F~ then there exists an operator L2 from /32 

into V2 with I l L ; i l l  = 1 and IIL~ll_-<2. Continuing so, we can construct finite 

subsets {Ej}7=~ and {F/}7=1 of the positive integers, subspaces U /=  [ t*] ,~ ,  and 

V/=  [t,],~F~ of T*; j = 1 , 2 , . . - ,  and invertible operators Lj from U/ into Vj ; 

j = 1 ,2 , . .  �9 such that 

(i) I < = E , < E 2 < . . . < E j <  . . .  and I = < G < F 2 < . - . < F j <  . . . ,  

(ii) U~=~ Ej = N and U~=~ Fj = {k.}7=1, 

(iii) Fj C Ej U E~+,, for all j, 

(iv) I I z ; ' l l  = 1 and IIL, II_-<2, for all j. 

By using Theorem 8 and the remark thereafter adapted for T* (see Remark 2 
following Corollary 12), it follows that the operator L : T*---> V, defined by 

Lw = ~ Lj(Ejw); w ~ T*, 
j = l  

is an isomorphism from T* onto a subspace of V. [] 

REMARK. The space T is not minimal. This fact, which is a consequence of 

the result mentioned in the Introduction that the unit vector bases in T and TM 

are equivalent, is proved in [4]. 

The blocking principle described in Theorem 13 can be used to extend results 

known for Co or l~-spaces to the case of spaces having an F.D.D. of type T or T*. 

PROPOSITION 15. Let V be a Banach space having an F.D.D. of type T 

(respectively, T*). Then every quotient space of V is isomorphic to a subspace of a 

space with an F.D.D. of type T (respectively, T*). 

PROOF. If the quotient of V has an F.D.D., Proposition 15 is a special case of 
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T h e o r e m  13. The  genera l  case is deduced  f rom the T h e o r e m  13 case in the same  

way as the cor responding  s t a t ement  in lp (cf. t h e o r e m  1 in [9]). [ ]  

It is well known that  quot ient  spaces of Co are i somorphic  to subspaces  of Co 

(cf. [9]). As  an appl icat ion of Propos i t ion  15, we p rove  that  a similar asser t ion 

holds for  T*.  

THEOREM 16. Every quotient space of  T* is isomorphic to a subspace of  T* 

and, hence, every subspace of  T is isomorphic to a quotient space of  T. 

PROOF. Let  W be a quot ient  space of T*.  By Propos i t ion  15, W is 

i somorphic  to a subspace  of a space Z having a F .D.D.  of type T*.  The  proof  

will be  comple t ed  once we show that  Z itself e m b e d s  i somorphical ly  in T*.  

Suppose  that  {Zn}~=l is an F .D.D.  of type T* for  Z relat ive to a sequence  

{kn}~=l. Choose  now an integer  r e ( l )  so that  W o = Z ~  is 2- i somorphic  to a 
:~ 2m subspace  of [tkn ]7~? (use the fact that,  for  each m, {t~n },=,, is 2-equivalent  to the 

unit  vec tor  basis in l~). Cons ider  now W1 = [ Z , ] ~  ~ and choose  an integer  

m ( 2 ) >  m (1) so that  W1 is 2- i somorphic  to a subspace  of [ (  ]~<o§  Cont inuing  

so, we construct  a blocking {W~}7=o of {Z,}~=I and an increasing sequence  

{m(i)}7=o of integers  (where m(0)  = 0) so that,  for  each i > 2, W~ = [Z,]~~ ~+, 
[~*  Ira(i+l) is 2- i somorphic  to a subspace  of t,k,j.=m<o+g. 

As men t ioned  above ,  { W~}7=o is also an F.D.  of type T* for  Z but  relat ive to 

{kmt0}7=l. Finally, for  each i, let L~ be an i somorph i sm f rom W~ onto  a subspace  
[ l *  ]m(i+l )  o f t  k,j,=,,,o~, so that  IIZ/'ll = 1 and IlL, II----2. By the vers ion of T h e o r e m  8 for  

F . D . D . ' s  of type T*,  the ope ra to r  L : Z - - ~ [ t * ] ~ = I C  T* defined by: Lz  = 

ET=o L~w~, for  z = E~=o w~ E Z with w~ E W~, i = 1, 2, .  �9 -,  is an i somorph i sm of Z 

on to  a subspace  of T*.  [ ]  
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